

FEATURES

" Low frequency 18" cone loudspeaker
" 1400 W program power handling
" 4" voice coil
" Ceramic magnetic structure
" Centre pole piece and side slot convection cooling (C.A.F.)

GPECIFICATIGNE

AES RMS (Average) Power Handling P :	700 W
Program Power Handling':	1400 W
Peak Power Handling:	2800 W
Sensitivity:	$99 \mathrm{~dB} \mathrm{SPL}, 1 \mathrm{~W} / 1 \mathrm{~m}$
Nominal Impedance:	8Ω
Nominal Frequency Range:	$30 \mathrm{~Hz}-2 \mathrm{kHz}$
Voice Coil:	Cu, edgewound
Voice Coil Diameter:	$102 \mathrm{~mm}(4 \mathrm{in})$
Cooling:	C.A.F. (Controlled Air Flow), pole piece and
	side slot convection
Frame:	Cast aluminium
Spider:	Double
Diaphragm:	Curved
Magnetics:	Anisotropic Barium Ferrite
Flux Density:	1.13 T
Input Connection:	Push terminals, 4 mm diameter
Polarity:	Positive voltage to red terminal moves
	diaphragm forward
Recommended Baffle Cutout Diameter:	415 mm
Weight:	11.6 kg
	$(25.4 \mathrm{lbs})$
Shipping Weight:	13 kg
	$(28.6 \mathrm{lbs})$

DESCRIPTIGN

The D.A.S. 18 G is a high efficiency $18^{\prime \prime}$ diameter cone loudspeaker with 4" diameter voice coil.

It features C.A.F. (Controlled Air Flow), which conjugates centre pole piece and side slot convection cooling to provide high power handling and low power compression.

Exclusive curing techniques are utilized to create an indestructible bond between the copper voice coil and its fibre-glass based support.

The computer designed injected aluminium basket supplies rigidity and mechanical grounding.

A double spider configuration is used for excursion control at high power levels.

APPLIGATIGNS

Woofer. Suitable for high power direct radiation and horn loaded low frequency enclosures.

[^0]

ALL DIMENSIONS IN MLIMETERS

Frequency Response

Figure 1 shows the on-axis (black) and 45degree (grey) frequency response at 1 m of a unit flush on a measurement baffle and radiating to an anechoic environment and driven by a 2.83 V swept sine signal.

Impedance

Figure 2 shows impedance with frequency of a unit suspended in free air.

Distortion

Figure 3 shows the Second Harmonic Distortion (grey) and Third Harmonic Distortion (dotted) curves for unit mounted on the measurement baffle and driven at 10% of its power handling.

NOTES. 1.Frequency response: referred to 1 m ; low-end obtained through the use of near field techniques; the large measurement baffle provides results akin to mounting the speaker in a diffraction free closed box with internal volume of 320 litres or larger. 2.In practice, cable and connector impedance need to be added. 3. Harmonic distortion components are not plotted beyond 20 kHz .

Product improvement through research and development is a continuous process at D.A.S. Audio. All specifications subject to change without notice.

Thiele-Gmall Parameters

Small-Signal
$F_{s}: 32 \mathrm{~Hz}$
$\mathrm{a}_{\text {ts }}: 0.296$
$\mathrm{O}_{\mathrm{es}}: 0.31$
$\mathrm{O}_{\mathrm{ms}}: 6.409$
$\eta_{0}: 3.44$ \%
$\mathrm{V}_{\mathrm{as}}: 343$ litres
$\mathrm{R}_{\mathrm{e}}: 6.2 \Omega$
$\mathrm{S}_{\mathrm{D}}: 0.1164 \mathrm{~m}^{2}$
(Preconditioning : 1 hour, AES power test at -3 dB rated power)

Large-Signal

$X_{\text {max }}: 6 \mathrm{~mm}(0-\mathrm{pk})^{\mathrm{xM}}$
$\mathrm{V}_{\mathrm{D}}: 0.6984 \mathrm{dm}^{3}$ ($0-\mathrm{pk}$)
${ }^{\mathrm{XM}}$ Calculated as $\left(\mathrm{H}_{\mathrm{vc}}-\mathrm{Hag}_{\mathrm{ag}}\right) / 2+\mathrm{H}_{\mathrm{ag}} / 4$

ADDITIGNAL DATA

Effective piston diameter: 385 mm
M_{ms} : 140 gr
$\mathrm{C}_{\mathrm{ms}}: 178 \mu \mathrm{~m} / \mathrm{N}$
Voice coil diameter: 102 mm
Voice coil winding depth, H_{vc} : 16 mm
Voice coil length: 30.4 m
Top plate thickness at voice coil, $\mathrm{H}_{\mathrm{ag}}: 8 \mathrm{~mm}$
Displacement limit: 24 mm (pk-pk)
Minimum impedance: 6.5Ω at 178 Hz
BL: 23.7 T.m
Spider suspension: polycotton
Surround suspension: polycotton
Voice coil support: GFRP (glass fibre reinforced polymer)

$\stackrel{\sim}{\stackrel{\circ}{\amalg}}$

[^0]: R Based on a 2 hour test continuously applying 6 dB crest factor pink noise bandlimited to $50-500 \mathrm{~Hz}$.
 Conventionally 3 dB higher than the average measure
 Korresponds to the signal crests for the test described in R

